

Multifamily Electrification

Electrical Infrastructure Case Studies

Jack Aitchison, AEA

December 7th, 2023

Agenda

- Multifamily Electrical Infrastructure
- Case Studies:
 - High Rise Example
 - Avoiding a Service Upgrade
 - Low Rise Example
 - Avoiding Subpanel Upgrades

Metering Configuration

- Santa Ana, CA | Built 1984
- 11 stories, 199 apartments
- Central gas DHW
- 2 pipe heating and cooling
- Chiller and gas boiler
- Limited electrical capacity
- Master Metered

SOW:

- Reversible Chiller to provide hydronic heating and cooling
- Central Heat Pump Water Heater for DHW

NEC Approved Electrical Load Monitoring Study

- Alternative approach to NEC Deemed Calculations
- Utilize actual demand rather than calculated demand to determine existing electrical load and available electrical capacity
- Often more favorable results compared to the calculated demand/load analysis

- Max demand calculation approach
- 12 months of bills reviewed
- 218 KW peak demand (summer)
- = 254 amps available capacity

EXISTING LOAD CALCULATION					
CKT	LOAD DESCRIPTION	KW	KVA		
	EXISTING LOAD MAX DEMAND PER 12 MONTH SCE	218.0			
	218.0 KW / 0.80 PF		272.5		
	25% FACTOR (NEC 220.87) ON MAX DEMAND PER 12 MONTH SCE		68.1		
TOTAL KVA 340.6					
946 AMP@ 208 / 120 V, 3 P / 4 W, 60HZ					
EXISTING SERVICE SIZE = 1200A @ 208/120V, 3PH, 4W					

- First pass at calculation
- Adds in CHPWH Plant
- Assumes worst case load
- Exceeds 1200 amp service

EXISTING LOAD CALCULATION					
CKT	LOAD DESCRIPTION	KW	KVA		
	EXISTING LOAD MAX DEMAND PER 12 MONTH SCE	218.0			
	218.0 KW / 0.80 PF		272.5		
	25% FACTOR (NEC 220.87) ON MAX DEMAND PER 12 MONTH SCE		68.1		
1	New HP Water Heater	77.0	96.3		
2	NEW ADDED PLUMBING LOAD				
3	25% OF LARGEST MOTOR		24.1		
TOTAL KVA 460.9					
1280 AMP@ 208 / 120 V, 3 P / 4 W, 60HZ					
EXISTING SERVICE SIZE = 1200A @ 208/120V, 3PH, 4W					

- Second pass at calculation
- Credit for more efficient HP Chiller
 - Existing = 590 amps
 - New = 490 amps (36 kVA)
- Just meets service capacity

Other Upgrades?

- LED Lighting Retrofit
- Ventilation Upgrades

CKT	LOAD DESCRIPTION	KW	KVA
	EXISTING LOAD MAX DEMAND PER 12 MONTH SCE	218.0	
	218.0 KW / 0.80 PF		272.5
	25% FACTOR (NEC 220.87) ON MAX DEMAND FER 12 MONTH SCE		68.1
1	REMOVED BOILER HVAC LOADS		-1.2
2	DELTA, REVISED HVAC PUMPS		11.1
3	3 DELTA, REVISED CHILLER		-36.0
4	DELTA, REV. AHU + SPLITS + EFs		11.1
5	5 NEW ADDED SWING TANK 6 NEW ADDED HP WATER HEATER		36.0
6			57.0
7	25% OF LARGEST MOTOR		6,3
	то	TAL KVA	424.8

Low Rise Full Electrification

- Sunnyvale, CA | Built 1994
- 3 stories, 121 SRO apartments, 1 on-site Manager Apartment
- Central combi gas boiler providing DHW & Space Heating
- Limited electrical capacity

ASSOCIATION FOR ENERGY AFFORDABILITY 날

- Master Metered
- Units do not have their own Kitchen

SOW:

- In-unit HVAC Electrification with Packaged Terminal Heat Pump (PTHP)
- Central Heat Pump Water Heater for DHW

PANEL	B		VOL	TS: 30	4W 120/200	V
MIG. :			MAIN	DIT		
TYPE :	MLO	harden	BUS	229A		11010
LOAD	DESCRIPTION	BRK C	I⊄ BRK	DES	SCHIPTION	LOAD
- 1200	# 114 MICROWAVE FRIG	2011	2 20/1	#121 MIC	rowave \$ Fr	1G 1200
1500	# 114 SMALL APPLIANCE	3-	+4	#121 SM	IALL APPLIANC	e 1500
1355	# 114 DECEPT \$ LTS	. 5-	++6	#121 Re	CEPT \$ UTS	1355
1200	# 115 MICROWAVE & FRIG	7.	+8	#122 MIC	crowave \$ fr	IG 1200
1500	# 115 SMALL APPLIANCE	9-	+10	#122 SM	ALL APPLIANCE	5 1500
355	# 115 RECEPT \$ LTS	11-	12	#122 ZE	CEPT & LTS	1355
1200	# 116 MICROWAVE & FIRIG	13-	14	#123 MIC	LROWAVE \$ FR	6 1200
1500	# 116 SMALL APPLIANCE	.15	+ 16	#123 SH	all appliance	1500
1355	# 116 RECEPT \$ 45	17-	418	#123 RE	CEPT \$ 45	1355
1200	# 117 MICROKLAVE \$ FRIG	19,	20	#124 MIC	CROWAVE # 72	IG 1200
1500	# 117 SMALL APPLIANCE	21	22	#124 SM	all appliance	= 1500
355	# 117 RECEPT \$ LTS	23	-24	#124 RE	CEPT & LTS	1355
1200	# 118 MICIZOWAVE & FRIG	. 25	26	#125 MIC	CROWAVE ##	eig 1200
1500	# 118 SMALL APPLANCE	27	-28	#125 SM	АШ АРРИАНС	e 1500
1355	# 11B RECEPT & LTS	29	30	#125 BE	CEPT & LTS	1355
1200	# 119 MIGROWAVE \$ FIRIG	31	321	#113 GA	RBAGE PISP	DSER 1200
1500	# 119 SMALL APPLIANCE	33	♦ -34	#114	B	1200
1355	# 19 RECEPT & LTS	35	436 -	¥ 5	es di	1200
1200	# 120 MICROWAVE & FRIG	37.	-38	# 116	. n	11 1200
- 1500	# 120 SMALL APPLIANCE	39	40	# 117	N	1 1200
355	# 120 RECEPT \$ 45	↓ 41-	421 1	#11B	1	1200

CIRCUIT DIRECTORY HPIB micro 2-121 mitro Small app. 4-121 Small app Recep. lights6 121 Recept 1; ghts 8 122 micro micro 10-122 Small app 115 Small app 12 122 RecepLights 115 Recep. lights 14 123 micro 13 11 Le micro Recep. 1.9 hts 16 123 small app 15 11/2 18 123 Receptights 17-116 Small app 20 124 micro mino 21 Recep 1:415 22 Jay Small app 117 Small app 24 124 Recept. Lights 23-25 118 mtcro 26 125 micro 27 118 Small app Small app. 28 125 29-118 Recepts. 1,9/130-125 Recepts, lights 19 micro 31 32-113 Garb. Disp Small APP 129 44 119 Reverts 1ights 36 115 120 micro. Frig 38 37 116 39 120 small app 40 117 41 120 Recepts 42 1 1. 118 min 114B361HO1

Peece . .

Existing Circuits in Each Dwelling Unit:

- Microwave/Mini Fridge
- Lighting and Receptacles
- Small Appliance
- Garbage Disposal
- No Available PTHP

Figure 4: Dwelling unit electrical

Proposed Circuits in Each Dwelling Unit:

- Microwave/Mini Fridge/Small Appliances
- Lighting and Receptacles
- PTHP
- Garbage Disposal

Other Options?

- Smart Splitter/Circuit Sharer
- Garbage Disposal/Small Appliance Circuit

Thank You!

